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Borehole Enhanced and Automated Realtime Description

BEARD

database traininig deployment on the field

0+:0 - C

Machine learning algorithms are trained BEARD automatically describe
on a database of core libraries photos rock chips from photos



v1al(®:] Why we are here

- BEARD actually under

development/deployment ' mlﬁhc
- Short term potential for .

BEARD *
Long term potential for '

BEARD




v1xl(*:] Meet the team

.....

Martin Blouin, PhD Jérome Simon

Cofounder and CEO

Lorenzo Perozzi, PhD
Cofounder and VP

Technical Director

As a CEO’ researcher and As a researcher and Jérome ensures the |ntegr|ty

scientist, Martin leads the entrepreneur committed to of databases and the reliability

majority of the projects related ethics in the implementation of of the results. Propelled by his

to artificial intelligence. Al, Lorenzo was recruited to experience with digital

He has a 10-year experience in participate in the co- methods in science, he

geophysics and data integration construction of the Montreal develops interpretation

applied to geosciences. Declaration for a Responsible techniques combining
Development of Artificial computer vision and artificial
Intelligence . He ensures that intelligence

this aspect is being reflected in
all activities of Geolearn.

JS Marcil, InG., MSc

Product Development Manager

With 20 years of E&P experience,
JSis in charge of product
development at Geolearn. Based
on its field background, JS directs
product development activities to
Geolearn's various customers,
from design through to production
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ixl[®:] Our vision

Geodata, enhanced!

We research, design & build Al technologies to help our
clients solve real-world problems using geodata and reducing
uncertainties.



Our mission

INVENT AND INVEST

Delivering more than products and
services building blocks for a growing
community

At Geolearn, we believe that Artificial Intelligence has the power to disrupt the
geoscience industry in a positive fashion, if done the right way. Our team is dedicated at
making sure your data go the extra mile with those technologies and at getting you
involved in the process.



GPITCH Al in geosciences

W INVENT AND INVEST

Al and in particular machine and deep learning have been applied with
success for different geosciences tasks such as:

« geomechanical properties characterization (Keynejad et al.(2017));

« automatic fault interpretation (Araya-Polo et al.(2017), Bugge et al.(2018), Guitton et
al.(2017));

« machine learning to predict core physical properties (Caté et al.(2017)) and;

« geophysical data inversion (Araya-Polo et al (2018), Smith et al.(2010))
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Machine learning as a tool for geologists

Antoine Caté'?, Lorenzo Perozzi', Erwan Gloaguen', and Martin Blouin'?

Abstract Geologic context and data . . i . . X o e b " ing f . o minim
Machine learning is becoming an appealing tool in various Areaofimterest. The Zn-Cu-Au Lalor deposit is a valcanogenic fwo properti have 2 Pta.rs?n_s r correlation coefficient aft!.‘r_‘l. lheupputglm;(j] supponv:ctnrmch_me, w‘hb:hlsadlscnm]r!ame 2;})18_11 Y gﬂ;lugkws S_D\’E:Fmp.lng for assaying so as to minimize A Probabiity  Predition
felds of earth sciens, ally i imation. Si ive sulphide deposit exploited by HudBay Mineral “This replacement enables retaining measured values of conductivity  classifier formally defined by a separating hyperplane; (4) classifica- the risk to overinok mineralization. o (gt  ofAuslgh ofAus=igh
elds of earth sciences, especially in resources ix posit exploited by ay Minerals (Hudbay) . N N Y : N The tting characteristic (ROC) ht o — —
: : : " i instead of completely dropping the property. tion trees, which are decision trees built by using thresholds on receiver operating characteristic curve gives insig —
m_m:hmz learning algorithms have been used to predict the presence  and located in central-north Manitoba, Canada, in the Snow For each interval, we computed derived features {variables)  input features ar each spli and (5) ensemble algorithms. The later an the precision/recall tradeoff for the positive class by giving the
of gold mineralization in drill core from geophysical logsacquired  Lake mining camp. The depaosit is composed of at least 12 stacked from summary statistics {minimum and maximum value, mean, s particularly well suited for this kind of problem as they combine true positive rate (i.e., recall) at different false positive rate thresh-
at the Lalor deposit, Manitoba, Canada. Results show that the  ore lenses divided into base metal (Zn-rich), gold, and copper-gold median, standard deviation and variance) of each physical property Ihepmd.»(tiﬂ‘n;nfmemlhsszz;timsmrs buillwiﬂ]sgive‘n]mming olds (Figure 4). Increasing the recall above 0.8 would be at the
integration of a set of rock physical properties — measured at  ore lenses (Caté et al., 2015). Base metal and copper-gold lenses . 1 . . expense of dramarically increasing false positive rates, which 20 A

closely spaced intervals along the drill core with ensemble machine

learning algorithms — allows the detection of gold-bearing in-  are easily distinguishable in drill core. Gold lenses are composed ‘The resulting data set contains several *not 1 value” (empty  outliers (Breiman, 2001). Here, the random forest and the gradient have) . z
tervals with an adequate rare of success. Since the resuling predic-  of disseminared sulphides, which can be difficult to distinguish cells). A common strategy consists of removing the corresponding — tree boosting algorithms are tested. Both algorithms use decisions F""“""“:’“"K""'HM’-MP?*E‘W“ results obtained on 400 - %E
tion is continuous along the drill core, the use of this type of tool  from the hydrothermally altered sulphide-bearing wall rocks. The features (columns) or sample (rows) from the data set entirely  trees as hase estimators one of the test drill holes are presented in Figure 5. Intervals located 2
in the future will help peologists in selecting sound intervals for  nugget effect and high variance in gold mineralization make the (Raschka, 2015). However, by applying this correction, part of Allalgorithms can be tuned with a series of various algorithm- above '"_'7_50 m depth B‘e"e“‘“}'h"feljﬂmeb’b‘hfl.\"?Fbemng 2%
aseay sampling and in modeling more continuous ore bodies  identification of mineralized bodies and mapping of their continu- the information that could be valusble for the final prediction  specific that ly contribute to the robustness, geld, whieintervalsbelow arepredicted as more ke, in general, :
during the entire life of a mine. ity in space challenging. Similarly to many other gold deposits, may be lost. variance, and bias of the classification. “The choice of the best pa- L - TP ¥ 500

Introduction

Since most outcropping deposits have already been discovered
and mature mining camps have started to dry out, the discovery
of new mineral deposits has become increasingly expensive and
risky in the last 15 years (Schodde, 2011). New discoveries tend
to be deeper and are located in more complex genlogic settings.
Hence, new geophysical, geochemical, and geologic data-collection
tools are developed to comp the increasing difficulty of
deposit discovery. In the next few years, logging tools with down-
hole sensors adapted to the mining industry (e.g., DET-CRC

are composed mainly of massive to semimassive sulphides and

gold-bearing mineral assemblages at Lalor can be difficult to
discriminate in drill core, which can introduce errors in the process
of selecting core intervals for assaying metal content. These errors
can lead to an underestimation in the volume of ore zones and
lead to the overlooking of economic zones during exploitation of
the deposit.

Data. Combined drill-hole rock physical properties and metal
assay data are available in a total of 14 drill holes intersecting
lenses of the deposit. A typical data set along a section of a drill
hole is presented in Figure 1.

Assay data was collected by Hudbay and analyzed for metals

w enhance the high-resolution information comprised in the  algorithm in order w improve rbustness over a single estimator.

geophysical logs.

These algorithms are particularly resistant to noisy data and o

" A solution, when using ensemble machine learning methods,  rameters is done through the training/validating process. Here, the
is 1o replace the missing values with an out-of-range value, usually  algorithms and the runing tols proposed by ScikitLearn (Pedregosa
-99999, that tell the algorithms to ignore the missing values. This et al, 2011) with Python have been used for the implementation.

strategy has been used for all statistically derived features.

Choosing the training and testing data sess. The data set was

Cus—sff valee for gold. The objective of this study is to evaluste  splitinto 3 training set composed of the data from 11 drill holes
the presence of gold in the rock (discriminate between low- and  and a testing set compased of the data from the remaining thres
high-gold content in the rock) and not to precisely evaluate gold  drill holes (Figure 2). Both the training and testing sets were
grade, which is done precisely by assaying. A cut-off gold grade s chosen so as to be representative of the geology of the deposit and

chosen t differentiate between the background gold values within  of the different types of gold mineralization.
the deposit and high gold values related togold lodes. The 1 itcut-off  “The training set is used to i

alporithms

wvalue has been retained arbitrarily, as it is a lot higher than the  and evaluates the prediction success of the algorithms. The data set

values, lower than

values, and still

is highly d (negative class with Au < 1 g/t is much greater

0 approximately 10% of the composited assay values.

than the positive class with Au » 1 g/t), and t cope for it, the

would lead to a precision score similar to that of a geologist {as
estimated above).

All zones with high gold values according to assays have been
classified a5 gold bearing by the prediction model in these drill
holes. ‘The probabilicy of an interval being gold bearing is distriburesd
as high-value intervals centered on the actuzal high-grade gold zones,
and with amore smoothed distribution than measured gold grades
(presented on & log scale in Figure 5). However, a few intervals
detected by the model as potentially gold bearing have not be assayed
or have been assayed and inchude only gold values below 1 g/t.
Feature imp “Ihe gradient tree boosting algorithm allows
the evaluation of the importance of the features used for the clas-
sification. The result is expressed zs the individual contribution of
each feature for building the predictive model. The feature-impor-
tance histogram is presented in Figure 6. An inflexion in the festure-

-+ B B

program in Australia) will permit the introduction of rock physical by Hudbay and ACME Laboratories. Assays were collected only N e e ot the 19% foarmee. and the eombinnd 1R
properties as standard data available during drilling campaigns.  in0.2 to 1 mlong intervals considered as potentially metal-bearing Classification strat - F— ;r;?ma‘r;:ui“::;zr:t ﬁjrléﬂ"(.:oflhg (L;T.{(:mn F"‘:‘T 2 T
ehi Iy knowledge-dri loration industry will then  during the core-logging process. A total of eight elements were assification sirategy Resigtuty Conducivty 1P Sateep. Gamma Neurn e Deesity A i " Figurs 5. Results of the prediction en a best dril hole. The values of gold

! = N Classificati ithms. Machi o B0 fou)  (tsl e ) i As expected, the most informative features are derived from P18 4 [

be shifting toward 3 more data-driven approach. Indeed, new  analyzed (Ag, As, Au, Cu, Fe, Ni, Pb, and Zn), and a significant Clasification aigoritéms, Machine — neutron activation, natural gamma, and resistivity logs, Both  SOncentration on assayed intervals (eft), the predicted probability of Au=1 gf
ini " o i o mi learning is an application of statistical = T g E || N g & P Y g {middle), and the result of the classification {right) are presented. The kocation
mining tools will generate gigantic amount of data acquired at  part of the measurements are below the detection limit. Only gold e S = fs neutron activation and natural gamma give insights on the elemen- :

. : R . - X arning, which identifies patterns in = 19 Bk 4 e g ights of are lenses, defined by Hudbay during the exploration stage (not up ta date
an almost continuous rate. This data carries a stong potential for  values are used in this study. Analysis and QA/QC methods are data and then makes predictions from 3 5 - tal compasition of the host rocks. Their classification powers are  data, refer ta Hudhay's website for information on reserves and resources), is
helping geologists and mining engi by providing twols to  provided in Carter et al. (2012), those pateme. ﬁmngm hree types 3 g E probably derived from the variations in rock composition, in part  given for reference.
better log the drill core, predict the lithofacies from geophysical Physical rock properties were logged by DGI Geoscience for of machine learning methods (su-per— g 5. X i
logs, predict mineralization, and optimize drilling and exploitation.  Hudbay. A total of 15 rock properties were collected at 2 10 to vised, unsupervised, and reinforcement ( b Fi Recelver operating curve
However, existing data-management and interpretation tols 20 cm spacing (Figure 1). A significant part of the measurements learning) supervised learning is the best : r 2’ ; = 14 B 1 [Neutron_ax D067
cannot cope with the quantity and variety of data collected. New  for each rock property was not taken into account for various suited for this work asits main goal is to > > S [ g L 008 7 log Natuel_Gamrea,_Max 0.065
integration methods are needed t optimize the surcome of this — reasons and indicated as “not 2 value™ in the dara ser. As an ex- learn a model from labeled training data H Y p= — o T
expensive data and allow their effective use in the exploration  ample, approximately 93% of the conductivity measurements that allows us to makea prediction (Ra- 2 j \®. &] 08 . T [ieg Fesistivty Binh_esan | 0048
process. Recently developed data mining and machine learning  were set at 0.5, & point at which no strong variation of the con- schka, 2015). Here, the term supervised £ %508 5 ! 5 g . log_ Fesisary_snen 0| 0z
techniques allow one to identify patterns in large multivariate  ductivity was encountered refers toa setof samples where both the £ ; £ } s =
data sets and to make predictions based on them. These methods desired output signals (Jabel) and the & i 5 5 |z 2 3o
have great potential for data integration and can help in decision  Data preprocessing predictive "‘"J“bkf]f‘%s ‘I"d :F“"‘d Pk £ | - = £
making for deposit modeling (eg, Hill et al, 2014). However, Joining assay and physical properties data sets. Gold assay satistics|are slreadyknown. In thiscase, | [T 8 g } = i -

! : o j ) o b ; the label is 1 binary classification of i ! H .
little research has been focused on applying machine learming  measurements have been compesited into 1 m long intervals using scamples v agnl-{v:luzhighzrt i & I 19 E o4l p
analysis for optimal and real-time mine mansgement. weighted averages in order to have a homogeneous data set and S S > 4 P 1l -
In this paper, we describe a workflow using rock physical  to avoid biased statistics during the modeling. Because physical 1g/t. A total of six erf:d,ﬂm learning “I:| { f i L
properties and machine learning to predict the presence of gold ~ properties have been logged with a 10 to 20 cm interval, between algorithems are tested here: (1) the ke 1ogg h 7] - N =
in the drill core, which would help geologists optimize sampling  five and 10 measuremnents were taken within each composited Mearest Neighhors (k-NN) method, g 5‘:}’ 'g i £ .
for assaying. The objective is to evaluate the performance of  gold assay interval. Parts of the physical properties were log- which uses labeled neighboring points g 3 7S ; = ROC curve
machine learning algorithms to predict the presence of invigible  transformed to obtain unskewed distribution. All0.3 values for in the Euclidian space formed by the s [ 52 Ran dom guess

gold in the drill core, using rock physical properties.

conductivity were replaced by log(1/log(Resistivity_Sinch)) as the

INRS, Centre Bau Terre Envircanement.
geal EARN.
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Special Section- Data analytics and machine leaming

input features to predict classes; (2) the
naive Hayesian method, which uses Rayes
theorem to evaluate the probability of an
event (class) to occur given the vahe of

Special Section: Data analyfics and machine learning
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Fagure 1. Typical Lakor data sel. Physical propesties logs are sampled at 10-20 cm, and assay compusites are 1 m
lang. Gray background indicates the ore lenses dofined by Hudhay.
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Figure 4. Receiver aperating characleristic (ROC) cune of the pradiction of the
presence af gold in test il holes

Special Section: Data anahytics and machine leaming
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Figure & Relative impertance of inpud features (descending order) for
classification with the gradient iree boosiing algurithm. The L5 most important
foatures are presenied in the table.
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Depth referenced

G

W INVENT AND INVEST

core photos

GEOLEARN
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Table
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La Predikor-litho

‘ From| To ‘ Code 2‘

ple of success:

Pred kor

Prediction

JJ.27 50.00 1T

4566 45.85 TLB

4585 47.19 TLB

47.19 47.38 TLB

47.38 4813 TLB

48.13 4829 TLB

4829 49.88 TLB

49.88 5042 TLB

5042 57.26 TLB

5726 57.45 TLB
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5859 59.53 TLB
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Predikor-litho2

Predikor-litho2
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Predikor-litho2

Predikor-litho2

Predikor-litho2

Predikor-litho2

Predikor-litho2

Predikor-litho2

Predikor-litho2

12J=7TJ7, TLD = &J 70

TLB - 73%, 12) - 27%

TLB - 80%, 12) - 20%

TLB - 75%, 12) - 25%

TLB - 85%, 12) - 15%

TLB - 91%, 12) - 9%

TLB - 100%, 12J - 0%

TLB - 100%, 12) - 0%

TLB - 100%, 12) - 0%

TLB - 85%, 12) - 15%

TLB - 96%, 12) - 4%

TLB - 90%, 12) - 10%

TLB - 100%, 12J - 0%

A change of pace in core logging

Predictions




About visual descriptions of core

v/ Subjective and qualitative
to semi-quantitative at most.

v/ Descriptions are not reproducible.

v/ Quality assessment and quality control
is hard to implement.

v Interpretation is frozen in time.




Automated drill core descriptions
opportunities

v/ Provide geologists with a highly valuable tool

for logging :
- Speed up the process;
- Standardize descriptions;

- Increase description quality.

S
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INVENT AND INVEST

Need for data

Acquiring new high value data:
> Ex: Hyperspectral images;

> Ex: Geophysical logs.

Use available data:

> Core boxes photos;

> Compiled geological descriptions.




Regression

Data-driven approaches

AaN
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Probability
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Training the network

Training images
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GPITCH

INVENT AND INVEST

Automatic descriptions from photographs

Successes: Limits:
v Standardization. v/ Size matters.
v Increased description pace. v/ Garbage in, garbage out.

v Requires linearized photos.



U

gll%) Other applications developed
UnBOX

Automatic linearization of box core pictures

Automatically
detection of cores
in pictures




GPITCH

INVENT AND INVEST

Core linearization

> Why is it necessary?

> People expect linear predictions along the core;
> Allows better interpretations.

> But tedious and slow if done by hand.

v Object detection with deep learning has come a long way.



GPITCH

INVENT AND INVES

Automatic core linearization

Predictions Predictions

ForeT000 —




UnBOX

Automated|linearization

From the coreshack...
...to a geolocalized linear image of your reservoir rock... in 3 seconds.




%PITCH Seismic Advanced Processin

INVENT AND INVEST

Unsupervised learning (k-means)

Results - seismic facies

seismic facies (Cross - line 119)

Inline— 200-
300—n-line

GEOLEARN




Our services ’\*/'PITCH

HT /JENT AND INVEST

DATA VISUALIZATION

S At Geolearn we do not simply
plot data, we tell a story with it!

Al-DRIVEN DATA ANALYTICS

Geolearn uses deep and machine
learning as well geostatistics to
retrieve more information from your
data.

SAAS SOLUTIONS KNOWLEDGE SHARING

Geolearn delivers tailor-made We offer training in machine learning,
applications that can handle basic geostatistics and python applied to the
data processing or more elaborate > geoscience industry. We also organize
cognitive computations and deliver ‘meet-up style’ events to bring
insightful visualization. together experts from all field and get

the discussion going.

We are proud to be among the qualified suppliers to provide Canada with
responsible and effective Al services, solutions and products



Training offered by Geolearn

Introduction to geoscientific Machine Learning in geoscience:

computing from theory to practice
2 day 3 day

Introduction to Python Introduction to machine learning;

Data manipulation in Python Database and input data

|0 data from multiple

" Feature engineering.
format (.xlIsx, csy, ascii, ...) & &

Unsupervised methods: applications and exercises for

Beautiful plotting in Python .
geoscience;

Introduction to Python libraries Supervised learning: from linear regression
for geocientific applications to ensemble methods.

End-to-end exercises applied to From data to models: end-to-end custom
geology and geophysics. exercise (possible BYOD: Bring your own data)




Borehole Enhanced and Automated Realtime Description

BEARD

database training deployment on the field

0+0 - C

Machine learning algorithms are trained BEARD automatically describe
on a database of core libraries photos rock chips from photos



ﬁPITCH Timeline

INVENT AND INVEST

@ 2019

Image capture
suite ready

Fast sampling of
core shack database

First public core shack test
completed

Compilation of log and image
for Utica Shales and other
formations of Quebec’s St.
Lawrence Lowlands



October 2019 @)

Replicating the
acquisition tool

Getting a robust workflow to
capture more data in Nova
Scotia and Ontario

O November 2019

ML algorithms
parametrization

Tune and train ML algorithms to
create predictive models




February 2020 O
Hand-held prototype
O April 2020

Ready for pre-launch

Getting the predictive tool to our beta
tester

Commercial launch

Active research of public and
private partners with core shacks

g

BEARD




SWOT Analysis

Strengths

- Sound experience in Al applied to
geosciences

- In-house workflows already adapted
for this product

Threats

- Emerging competitors
- Rapid saturation of the market?
- Big players with massive resources

Weakness

- Resource limitations

- Geographic location

Opportunities

- Underserved market

- Few (or no) competitors

- Emerging need for the product
- Rapid growth



"I1¢i] BEARD - Action Steps

D INVEST

EXPAND THE
MARKET

Grow geographically but also
target new applications like
geotechnical drilling

BUILD A COOL TOOL

Get the predictive model in a
hand-held format that will
facilitate and optimize field
work

GATHER MORE DATA

Get deals with public and
PROOF OF CONCEPT private coreshack owners

Demonstrate the technical
validity of the approach
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